102 research outputs found

    Addressing the path-length-dependency confound in white matter tract segmentation

    Get PDF
    We derive the Iterative Confidence Enhancement of Tractography (ICE-T) framework to address the problem of path-length dependency (PLD), the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either approximated the complete white-matter compartment (too low threshold) or failed to propagate through complex regions (too high threshold). The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to provide tract segmentations for tract based analysis, or for brain network analysis

    The crossed projection to the striatum in two species of monkey and in humans: behavioral and evolutionary significance

    Get PDF
    The corpus callosum establishes the anatomical continuity between the 2 hemispheres and coordinates their activity. Using histological tracing, single axon reconstructions, and diffusion tractography, we describe a callosal projection to n caudatus and putamen in monkeys and humans. In both species, the origin of this projection is more restricted than that of the ipsilateral projection. In monkeys, it consists of thin axons (0.4–0.6 µm), appropriate for spatial and temporal dispersion of subliminal inputs. For prefrontal cortex, contralateral minus ipsilateral delays to striatum calculated from axon diameters and conduction distance are <2 ms in the monkey and, by extrapolation, <4 ms in humans. This delay corresponds to the performance in Poffenberger's paradigm, a classical attempt to estimate central conduction delays, with a neuropsychological task. In both species, callosal cortico-striatal projections originate from prefrontal, premotor, and motor areas. In humans, we discovered a new projection originating from superior parietal lobule, supramarginal, and superior temporal gyrus, regions engaged in language processing. This projection crosses in the isthmus the lesion of which was reported to dissociate syntax and prosody. The projection might originate from an overproduction of callosal projections in development, differentially pruned depending on species

    Cytosolic diffusivity and microscopic anisotropy of N-acetyl aspartate in human white matter with diffusion-weighted MRS at 7 T

    Get PDF
    Metabolite diffusion measurable in humans in vivo with diffusion-weighted spectroscopy (DW-MRS) provides a window into the intracellular morphology and state of specific cell types. Anisotropic diffusion in white matter is governed by the microscopic properties of the individual cell types and their structural units (axons, soma, dendrites). However, anisotropy is also markedly affected by the macroscopic orientational distribution over the imaging voxel, particularly in DW-MRS, where the dimensions of the volume of interest (VOI) are much larger than those typically used in diffusion-weighted imaging. One way to address the confound of macroscopic structural features is to average the measurements acquired with uniformly distributed gradient directions to mimic a situation where fibers present in the VOI are orientationally uniformly distributed. This situation allows the extraction of relevant microstructural features such as transverse and longitudinal diffusivities within axons and the related microscopic fractional anisotropy. We present human DW-MRS data acquired at 7 T in two different white matter regions, processed and analyzed as described above, and find that intra-axonal diffusion of the neuronal metabolite N-acetyl aspartate is in good correspondence to simple model interpretations, such as multi-Gaussian diffusion from disperse fibers where the transverse diffusivity can be neglected. We also discuss the implications of our approach for current and future applications of DW-MRS for cell-specific measurements

    Diversity of cortico-descending projections: histological and diffusion MRI characterization in the monkey

    Get PDF
    The axonal composition of cortical projections originating in premotor, supplementary motor (SMA), primary motor (a4), somatosensory and parietal areas and descending towards the brain stem and spinal cord was characterized in the monkey with histological tract tracing, electron microscopy (EM) and diffusion MRI (dMRI). These 3 approaches provided complementary information. Histology provided accurate assessment of axonal diameters and size of synaptic boutons. dMRI revealed the topography of the projections (tractography), notably in the internal capsule. From measurements of axon diameters axonal conduction velocities were computed. Each area communicates with different diameter axons and this generates a hierarchy of conduction delays in this order: a4 (the shortest), SMA, premotor (F7), parietal, somatosensory, premotor F4 (the longest). We provide new interpretations for i) the well-known different anatomical and electrophysiological estimates of conduction velocity; ii) why conduction delays are probably an essential component of the cortical motor command; and iii) how histological and dMRI tractography can be integrated

    Iron Oxide Nanoparticles as a Contrast Agent for Synchrotron Imaging of Sperm

    Full text link
    Fast phase-contrast imaging offered by modern synchrotron facilities opens the possibility of imaging dynamic processes of biological material such as cells. Cells are mainly composed of carbon and hydrogen, which have low X-ray attenuation, making cell studies with X-ray tomography challenging. At specific low energies, cells provide contrast, but cryo-conditions are required to protect the sample from radiation damage. Thus, non-toxic labelling methods are needed to prepare living cells for X-ray tomography at higher energies. We propose using iron oxide nanoparticles due to their proven compatibility in other biomedical applications. We show how to synthesize and attach iron oxide nanoparticles and demonstrate that cell-penetrating peptides facilitate iron oxide nanoparticle uptake into sperm cells. We show results from the TOMCAT Nanoscope (Swiss Light Source), showing that iron oxide nanoparticles allow the heads and midpiece of fixed sperm samples to be reconstructed from X-ray projections taken at 10 keV.Comment: 21 pages, 6 figure

    Image quality transfer and applications in diffusion MRI

    Get PDF
    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard “single-shell” data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems
    corecore